Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 181: 113894, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35785722

RESUMO

Raman spectroscopy is a powerful non-destructive technique for the identification and characterization of plastics, but a major shortcoming of this technique is that environmental weathering, dyes, and additives in the material can generate a strong fluorescence background that overwhelms the Raman scattering. Here, we demonstrate that time-gated Raman spectroscopy can be used to successfully reduce the fluorescence signal and measure Raman spectra of recovered plastics. Time-gating removes a significant amount of background signal from the Raman spectra such that the polymers and color additives can be identified using similar measurement times compared to continuous-wave Raman spectroscopy. Examples of this are shown for a small subset of samples recovered from Hawaiian marine environments and a nonweathered commercial plastic. Time-gated Raman spectroscopy can also be used to characterize samples that are black in color due to carbon-based additives like graphite, which can be challenging to characterize via other common vibrational spectroscopic techniques.


Assuntos
Plásticos , Análise Espectral Raman , Havaí , Polímeros , Análise Espectral Raman/métodos
2.
Langmuir ; 38(30): 9119-9128, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35856835

RESUMO

Bottom-up proteomic experiments often require selective conjugation or labeling of the N- and/or C-termini of peptides resulting from proteolytic digestion. For example, techniques based on surface fluorescence imaging are emerging as a promising route to high-throughput protein sequencing but require the generation of peptide surface arrays immobilized through single C-terminal point attachment while leaving the N-terminus free. While several robust approaches are available for selective N-terminal conjugation, it has proven to be much more challenging to implement methods for selective labeling or conjugation of the C-termini that can discriminate between the C-terminal carboxyl group and other carboxyl groups on aspartate and glutamate residues. Further, many approaches based on conjugation through amide bond formation require protection of the N-terminus to avoid unwanted cross-linking reactions. To overcome these challenges, herein, we describe a new strategy for single-point selective immobilization of peptides generated by protease digestion via the C-terminus. The method involves immobilization of peptides via lysine amino acids which are found naturally at the C-terminal end of cleaved peptides from digestions of certain serine endoproteinases, like LysC. This lysine and the N-terminus, the sole two primary amines in the peptide fragments, are chemically reacted with a custom phenyl isothiocyanate (EPITC) that contains an alkyne handle. Subsequent exposure of the double-modified peptides to acid selectively cleaves the N-terminal amino acid, while the modified C-terminus lysine remains unchanged. The alkyne-modified peptides with free N-termini can then be immobilized on an azide surface through standard click chemistry. Using this general approach, surface functionalization is demonstrated using a combination of X-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM).


Assuntos
Peptídeo Hidrolases , Proteômica , Alcinos , Lisina/química , Peptídeos/química , Proteômica/métodos
3.
Polymers (Basel) ; 14(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35406198

RESUMO

Ultra-high molar mass polyethylene (UHMMPE) is commonly used for ballistic-resistant body armor applications due to the superior strength of the fibers fabricated from this material combined with its low density. However, polymeric materials are susceptible to thermally induced degradation during storage and use, which can reduce the high strength of these fibers, and, thus, negatively impact their ballistic resistance. The objective of this work is to advance the field of lightweight and soft UHMMPE inserts used in various types of ballistic resistant-body armor via elucidating the mechanisms of chemical degradation and evaluating this chemical degradation, as well as the corresponding physical changes, of the UHMMPE fibers upon thermal aging. This is the first comprehensive study on thermally aged UHMMPE fibers that measures their decrease in the average molar mass via high-temperature size exclusion chromatography (HT-SEC) analysis. The decrease in the molar mass was further supported by the presence of carbon-centered free radicals in the polyethylene that was detected using electron paramagnetic resonance (EPR) spectroscopy. These carbon-centered radicals result from a cascade of thermo-oxidative reactions that ultimately induce C-C ruptures along the backbone of the polymer. Changes in the crystalline morphology of the UHMMPE fibers were also observed through wide-angle X-ray diffraction (WAXS), showing an increase in the amorphous regions, which promotes oxygen diffusion into the material, specifically through these areas. This increase in the amorphous fraction of the highly oriented polyethylene fibers has a synergistic effect with the thermo-oxidative degradation processes and contributes significantly to the decrease in their molar mass.

4.
Macromolecules ; 55(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733719

RESUMO

The structural characterization of branched polymers still poses experimental challenges despite their technological potential. This lack of clarity is egregious in linear low-density polyethylene (LLDPE), a common industrial plastic. Here, we design a coarse-grain, implicit solvent molecular dynamics model for LLDPE in 1,2,4-trichlorobenzene, a canonical good solvent, that replicates all-atom simulations and experiments. We employ this model to test the relationship between the contraction factors, the ratios of branched to linear dilute solution properties. In particular, we relate the contraction factor of the radius of gyration to that of the intrinsic viscosity and the hydrodynamic radius. The contraction exponents are constant as we vary branch length and spacing in contrast to theoretical expectations. We use this observation to develop a general theory for the dilute solution properties of linear polymers with linear side-chain branches, comb-like macromolecules, in a good solvent and validate the theory by generating master curves for LLDPE.

5.
ACS Sustain Chem Eng ; 9(2): 623-628, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38706722

RESUMO

The accumulation of plastic waste in the environment has prompted the development of new chemical recycling technologies. A recently reported approach employed homogeneous organometallic catalysts for tandem dehydrogenation and olefin cross metathesis to depolymerize polyethylene (PE) feedstocks to a mixture of alkane products. Here, we build on that prior work by developing a fully heterogeneous catalyst system using a physical mixture of SnPt/γ-Al2O3 and Re2O7/γ-Al2O3. This heterogeneous catalyst system produces a distribution of linear alkane products from a model, linear C20 alkane, n-eicosane, and from a linear PE substrate (which is representative of high-density polyethylene), both in an n-pentane solvent. For the PE substrate, a molecular weight decrease of 73% was observed at 200 °C in 15 h. This type of tandem chemistry is an example of an olefin-intermediate process, in which poorly reactive aliphatic substrates are first activated through dehydrogenation and then functionalized or cleaved by a highly-active olefin catalyst. Olefin-intermediate processes like that examined here offer both a selective and versatile means to depolymerize polyolefins at lower severity than traditional pyrolysis or cracking conditions.

6.
J Chromatogr A ; 1628: 461424, 2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32822969

RESUMO

Block copolymers that exhibit both an upper critical solution temperature and a lower critical solution temperature are difficult to characterize due to inherent solubility difference between the two blocks. For example, accurate determination of both the molar mass and molar mass distribution is challenging for polyzwitterion-block-N-isopropyl acrylamide (NIPAM) copolymers in aqueous solutions due to self-assembly. However, there are a few examples of using size exclusion chromatography (SEC) for characterization, in which hexafluoro isopropanol (HFIP) is used in all cases. Yet, researchers are hesitant to use this solvent due to how expensive and hazardous HFIP is. Therefore, alternatives to HFIP for SEC analysis would be desirable. Here, a systematic methodology featuring aqueous SEC is demonstrated using several solvent conditions to enable the elution of polyzwitterion-block-NIPAM copolymers on Agilent PolarGel† and Tosoh TSKgel† column sets. These SEC conditions include 0.2 M KI in water on the PolarGel columns and 0.2 M KI/ 30% DMF in water on the PolarGel and TSKgel columns. These aqueous systems can be utilized for the characterization of similar water-soluble block copolymers that are relevant for drug delivery and other biomedical applications.


Assuntos
Acrilamidas/química , Cromatografia em Gel/métodos , Polímeros/química , Acrilamidas/síntese química , Polimerização , Polímeros/síntese química , Sais/química , Solventes/química , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/química , Temperatura , Água
7.
Artigo em Inglês | MEDLINE | ID: mdl-38486805

RESUMO

Material extrusion (MatEx) is finding increasing applications in additive manufacturing of thermoplastics due to the ease of use and the ability to process disparate polymers. Since part strength is anisotropic and frequently deviates negatively with respect to parts produced by injection molding, an urgent challenge is to predict final properties of parts made through this method. A nascent effort is underway to develop theoretical and computational models of MatEx part properties, but these efforts require comprehensive experimental data for guidance and validation. As part of the AM-Bench framework, we provide here a thorough set of measurements on a model system: polycarbonate printed in a simple rectangular shape. For the precursor material (as-received filament), we perform rheology, gel permeation chromatography, and dynamical mechanical analysis, to ascertain critical material parameters such as molar mass distribution, glass transition, and shear thinning. Following processing, we conduct X-ray computed tomography, scanning electron microscopy, depth sensing indentation, and atomic force microscopy modulus mapping. These measurements provide information related to pores, method of failure, and local modulus variations. Finally, we conduct tensile testing to assess strength and degree of anisotropy of mechanical properties. We find several effects that lead to degradation of tensile properties including the presence of pore networks, poor interfacial bonding, variations in interfacial mechanical behavior between rasters, and variable interaction of the neighboring builds within the melt state. The results provide insight into the processing-structure-property relationships and should serve as benchmarks for the development of mechanical models.

8.
ACS Macro Lett ; 8(7): 806-811, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35619502

RESUMO

The fracture behavior of glassy polymers is strongly coupled to molecular parameters such as entanglement density as well as extrinsic parameters such as strain rate and test temperature. Here we use laser-induced projectile impact testing (LIPIT) to study the extreme strain rate (≈107 s-1) puncture behavior of free-standing polycarbonate (PC) thin films. We demonstrate that changes to the PC molecular mass and the degree of plasticization can lead to substantial changes in the specific puncture energy. We relate these changes to the alteration of the entanglement density of the polymer that determines the underlying failure mechanism as well as the size of the deformation zone.

9.
Environ Sci Technol ; 52(20): 11535-11544, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30207718

RESUMO

Pelagic Pacific sea turtles eat relatively large quantities of plastic (median 5 g in gut). Using Fourier transform infrared spectroscopy, we identified the polymers ingested by 37 olive ridley, 9 green, and 4 loggerhead turtles caught as bycatch in Hawaii- and American Samoa-based longline fisheries. Unidentifiable samples were analyzed using high-temperature size exclusion chromatography with multiple detectors and/or X-ray photoelectron spectroscopy. Regardless of species differences in dive depths and foraging strategies, ingested plastics were primarily low-density, floating polymers (51% low-density polyethylene (LDPE), 26% polypropylene (PP), 10% unknown polyethylene (PE), and 5% high-density PE collectively). Albeit not statistically significant, deeper diving and deeper captured olive ridley turtles ate proportionally more plastics expected to sink (3.9%) than intermediate-diving green (1.2%) and shallow-diving loggerhead (0.3%) turtles. Spatial, but no sex, size, year, or hook depth differences were observed in polymer composition. LDPE and PP, some of the most produced and least recycled polymers worldwide, account for the largest percentage of plastic eaten by sea turtles in this region. These novel data inform managers about the threat of plastic ingestion to sea turtles and may motivate development of more environmentally friendly practices for plastic production, use, and waste management.


Assuntos
Plásticos , Tartarugas , Animais , Havaí , Polímeros , Resíduos
10.
Phys Rev Mater ; 2(3)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29904750

RESUMO

Polyamide nanomembranes are at the heart of water desalination, a process which plays a critical role in clean water production. Improving their efficiency requires a better understanding of the relationship between chemistry, network structure, and performance but few techniques afford compositional information in ultrathin films (<100 nm). Here, we leverage resonant soft x-ray reflectivity, a measurement that is sensitive to the specific chemical bonds in organic materials, to quantify the functional group concentration in these polyamides. We first employ reference materials to establish quantitative relationships between changes in the optical constants and functional group density, and then use the results to evaluate the functional group concentrations of polyamide nanomembranes. We demonstrate that the difference in the amide carbonyl and carboxylic acid group concentrations can be used to calculate the crosslink density, which is shown to vary significantly across three different polyamide chemistries. A clear relationship is established between the functional group density and the permselectivity (α), indicating that more densely crosslinked materials result in a higher α of the nanomembranes. Finally, measurements on a polyamide/poly(acrylic acid) bilayer demonstrate the ability of this approach to quantify depth-dependent functional group concentrations in thin films.

11.
Mar Pollut Bull ; 127: 704-716, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29475714

RESUMO

Polymer identification of plastic marine debris can help identify its sources, degradation, and fate. We optimized and validated a fast, simple, and accessible technique, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), to identify polymers contained in plastic ingested by sea turtles. Spectra of consumer good items with known resin identification codes #1-6 and several #7 plastics were compared to standard and raw manufactured polymers. High temperature size exclusion chromatography measurements confirmed ATR FT-IR could differentiate these polymers. High-density (HDPE) and low-density polyethylene (LDPE) discrimination is challenging but a clear step-by-step guide is provided that identified 78% of ingested PE samples. The optimal cleaning methods consisted of wiping ingested pieces with water or cutting. Of 828 ingested plastics pieces from 50 Pacific sea turtles, 96% were identified by ATR FT-IR as HDPE, LDPE, unknown PE, polypropylene (PP), PE and PP mixtures, polystyrene, polyvinyl chloride, and nylon.


Assuntos
Monitoramento Ambiental/métodos , Plásticos/análise , Tartarugas/metabolismo , Resíduos/análise , Poluentes Químicos da Água/análise , Animais , Ingestão de Alimentos , Monitoramento Ambiental/instrumentação , Conteúdo Gastrointestinal/química , Estrutura Molecular , Oceano Pacífico , Sensibilidade e Especificidade , Espectroscopia de Infravermelho com Transformada de Fourier , Estados Unidos
12.
Artigo em Inglês | MEDLINE | ID: mdl-30983636

RESUMO

Material extrusion additive manufacturing processes force molten polymer through a printer nozzle at high (> 100 s-1) wall shear rates prior to cooling and crystallization. These high shear rates can lead to flow-induced crystallization in common polymer processing techniques, but the magnitude and importance of this effect is unknown for additive manufacturing. A significant barrier to understanding this process is the lack of in situ measurement techniques to quantify crystallinity after polymer filament extrusion. To address this issue, we use a combination of infrared thermography and Raman spectroscopy to measure the temperature and percent crystallinity of extruded polycaprolactone during additive manufacturing. We quantify crystallinity as a function of time for the nozzle temperatures and filament feed rates accessible to the apparatus. Crystallization is shown to occur faster at higher shear rates and lower nozzle temperatures, which shows that processing conditions can have a dramatic effect on crystallization kinetics in additive manufacturing.

13.
Macromolecules ; 50(17): 6668-6678, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28970637

RESUMO

We present a method for the direct measurement of the relative energy of interaction between a solvated polymer and a solid interface. By tethering linear chains covalently to the surface, we ensured the idealized and constant configuration of polymer molecules for measurement, modeling, and parameter estimation. For the case of amine-terminated polystyrene bound to a glycidoxypropyl silane film submerged in cyclohexane-d12, we estimated the χ parameter for the temperature range 10.7 °C to 52.0 °C, and found a downward sloping trend that crosses the χ = 0.5 threshold at 37 °C to 40 °C, in agreement with solution estimates for the same system. We simultaneously estimated the surface interaction parameter χs at each temperature, finding a decreasing affinity of the chains for the surface with increasing temperature, consistent with empirical observations. The theoretical model shows some limitations in a stronger solvent (toluene-d8) that prevent rigorous parameter estimation, but we demonstrate a qualitative change in χ and χs towards stronger solvency and weaker surface interaction with increasing temperature.

14.
Langmuir ; 32(32): 8071-6, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27442615

RESUMO

We used an ultraviolet-ozone (UVO) cleaner to create substrates for atom-transfer radical polymerization (ATRP) with varying surface initiator coverage. We collected complementary time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS) measurements to investigate the precise chemical origin of the variation in grafting density. At short exposure times, the atomic composition underwent minor changes except for the relative amount of bromine. At longer UVO exposure times, there is clear evidence of exposure-dependent surface initiator oxidation. We interpret these data as evidence of a bromine ablation process within the UVO cleaner, with additional oxidative modification of the rest of the surface. We then used these substrates to create a series of poly(methyl methacrylate) (PMMA) brushes varying in grafting density, demonstrating the utility of this tool for the control of polymer brush density. The measured brush grafting densities were correlated with the bromine concentration measured by both ToF-SIMS and XPS. XPS and brush thicknesses correlated strongly, following an exponential decay with a half-life of 18 ± 1 s.

15.
Conf Proc Soc Plast Eng ; 2016: 1892-1895, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28730186

RESUMO

The National Institute of Standards and Technology (NIST) provides science, industry, and government with a central source of well-characterized materials certified for chemical composition or for some chemical or physical property. These materials are designated Standard Reference Materials® (SRMs) and are used to calibrate measuring instruments, to evaluate methods and systems, or to produce scientific data that can be referred readily to a common base. In this paper, we discuss the history of polymer based SRMs, their current status, and challenges and opportunities to develop new standards to address industrial measurement challenges.

16.
Biomacromolecules ; 14(2): 377-86, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23286367

RESUMO

A two-dimensional model of a solid-supported enzyme catalyst bead is fabricated on a quartz crystal microbalance with dissipation monitoring (QCM-D) sensor to measure in situ interfacial stability and mechanical properties of Candida antarctica Lipase B (CAL B) under varied conditions relating to ring-opening polymerization. The model was fabricated using a dual photochemical approach, where poly(methyl methacrylate) (PMMA) thin films were cross-linked by a photoactive benzophenone monolayer and blended cross-linking agent. This process produces two-dimensional, homogeneous, rigid PMMA layers, which mimic commercial acrylic resins in a QCM-D experiment. Adsorption of CAL B to PMMA in QCM-D under varied buffer ionic strengths produces a viscoelastic enzyme surface that becomes more rigid as ionic strength increases. The rigid CAL B/PMMA interface demonstrates up to 20% desorption of enzyme with increasing trace water content. Increased polycaprolactone (PCL) binding at the enzyme surface was also observed, indicating greater PCL affinity for a more hydrated enzyme surface. The enzyme layer destabilized with increasing temperature, yielding near complete reversible catalyst desorption in the model.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lipase/química , Lipase/metabolismo , Polimetil Metacrilato/metabolismo , Adsorção , Biocatálise , Candida/enzimologia , Estabilidade Enzimática , Enzimas Imobilizadas , Concentração Osmolar , Poliésteres/metabolismo , Polímeros/química , Polimetil Metacrilato/química , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície , Substâncias Viscoelásticas , Água/química
17.
Langmuir ; 28(41): 14693-702, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23009188

RESUMO

The postpolymerization functionalization of poly(N-hydroxysuccinimide 4-vinylbenzoate) brushes with reactive alkynes that differ in relative rates of activity of alkyne-azide cycloaddition reactions is described. The alkyne-derived polymer brushes undergo "click"-type cycloadditions with azido-containing compounds by two mechanisms: a strain-promoted alkyne-azide cycloaddition (SPAAC) with dibenzocyclooctyne (DIBO) and azadibenzocyclooctyne (ADIBO) or a copper-catalyzed alkyne-azide cycloaddition (CuAAC) to a propargyl group (PPG). Using a pseudo-first-order limited rate equation, rate constants for DIBO, ADIBO, and PPG-derivatized polymer brushes functionalized with an azide-functionalized dye were calculated as 7.7 × 10(-4), 4.4 × 10(-3), and 2.0 × 10(-2) s(-1), respectively. The SPAAC click reactions of the surface bound layers were determined to be slower than the equivalent reactions in solution, but the relative ratio of the reaction rates for the DIBO and ADIBO SPAAC reactions was consistent between solution and the polymer layer. The rate of functionalization was not influenced by the diffusion of azide into the polymer scaffold as long as the concentration of azide in solution was sufficiently high. The PPG functionalization by CuAAC had an extremely fast rate, which was comparable to other surface click reaction rates. Preliminary studies of dilute solution azide functionalization indicate that the diffusion-limited regime of brush functionalization impacts a 50 nm polymer brush layer and decreases the pseudo-first-order rate by a constant diffusion-limited factor of 0.233.


Assuntos
Alcinos/química , Azidas/química , Polímeros/química , Catálise , Química Click , Ciclização , Estrutura Molecular , Polimerização , Polímeros/síntese química , Propriedades de Superfície
18.
J Am Chem Soc ; 134(1): 179-82, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22191601

RESUMO

Reactive polymer brushes grown on silicon oxide surfaces were derivatized with photoreactive 3-(hydroxymethyl)naphthalene-2-ol (NQMP) moieties. Upon 300 or 350 nm irradiation, NQMP efficiently produces o-naphthoquinone methide (oNQM), which in turn undergoes very rapid Diels-Alder addition to vinyl ether groups attached to a substrate, resulting in the covalent immobilization of the latter. Any unreacted oNQM groups rapidly add water to regenerate NQMP. High-resolution surface patterning is achieved by irradiating NQMP-derivatized surfaces using photolithographic methods. The Diels-Alder photoclick reaction is orthogonal to azide-alkyne click chemistry, enabling sequential photoclick/azide-click derivatizations to generate complex surface functionalities.


Assuntos
Química Click , Processos Fotoquímicos , Polímeros/química , Ésteres , Luz , Naftalenos/química , Propriedades de Superfície
19.
J Am Chem Soc ; 132(32): 11024-6, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20698664

RESUMO

Surfaces containing reactive ester polymer brushes were functionalized with cyclopropenone-masked dibenzocyclooctynes for the light activated immobilization of azides using catalyst-free click chemistry. The photodecarbonylation reaction in the amorphous brush layer is first order for the first 45 s with a rate constant of 0.022 s(-1). The catalyst-free cycloaddition of surface bound dibeznocyclooctynes proceeds rapidly in the presence of azides under ambient conditions. Photolithography using a shadow mask was used to demonstrate patterning with multiple azide containing molecules. This surface immobilization strategy provides a general and facile platform for the generation of multicomponent surfaces with spatially resolved chemical functionality.


Assuntos
Cobre/química , Processos Fotoquímicos , Azidas/química , Ciclopropanos/química , Ésteres , Luz , Polímeros/química , Análise Espectral , Propriedades de Superfície
20.
Langmuir ; 26(3): 2136-43, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20099926

RESUMO

In this Article, we describe a method for the polymerization of active esters based on N-hydroxysuccinimide 4-vinyl benzoate (NHS4VB) using surface initiated atom transfer radical polymerization (SI-ATRP). Poly(NHS4VB) brushes have high grafting density and a uniform and smooth morphology, and film thickness increases linearly with reaction time. Block copolymer brushes with 2-hydroxyethyl acrylate, tert-butyl acrylate, and styrene were synthesized from surface bound poly(NHS4VB) macroinitiators. The active ester brushes show rapid and quantitative conversion under aminolysis conditions with primary amines, which was studied using grazing incidence attenuated total reflection Fourier transform infrared (GATR-FTIR) and UV-vis spectroscopy. UV-vis was also used to quantify the amount of reactive groups in polymer brush layers of differing thickness. Functionalization of the active ester pendant groups with chromophores containing primary amines showed a linear correlation between the amount of chromophore incorporated into the brush layer and brush thickness. Grafting densities as high as 25.7 nmol/cm(2) were observed for a 50 nm brush. Block copolymer brushes with buried active ester functional moieties also undergo quantitative conversion with primary amines as confirmed by GATR-FTIR. We discuss the potential of activated ester brushes as universal scaffolds for sensor and microarray surfaces, where the twofold control of functionalizable active ester polymer and block copolymers provides well-ordered, tunable microenvironments.


Assuntos
Ésteres/química , Polímeros/química , Acrilatos/química , Benzoatos/química , Cinética , Análise em Microsséries , Polímeros/síntese química , Estireno/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...